

Urban Agriculture at Crossroads

Prof. Dr. Ranka Junge

Gør tanke til handling VIA University College

17 PARTNERSHIPS FOR THE GOALS

B

16 PEACE, JUSTICE AND STRONG INSTITUTIONS

15 LIFE ON LAND

ب[~]

14 UFE BELOW WATER

2 ZERO HUNGER

End hunger, achiez food security and improved ny critio and promote sustainable

REDUCED INEQUALITIES

 \frown

NUSTRY, INNOVATION

8 DECENT WP

4 QUALITY EDUCATION

5 GENDER EQUALITY

đ

6 CLEAN WATER AND SANITATION

۵

Make cities and human settlements inclusive, safe, resilient and sustainable

12 RESPONSIBLE CONSUMPTION AND PRODUCTION

13 CLIMATE ACTION

<section-header>

ted access to a community

Zurich University

Agriculture vs. Horticulture

Aspect	Agriculture	Horticulture
Provision	Calories/Protein	Vitamins
	Macronutrients	Micronutrients
Examples of crops	Grains, potatoes, legumes	Vegetables, Fruits,
		Mushrooms
Area required (Martelozzo et al 2014)	1029% of urban space	73% of urban space
Daily amount recommended (WHO 2003)	0.5-1.5 kg	0.4 kg
Treatment prior to consumption	Multi-step processing	None or minimal
Longevity	Weeks to years (can be	A few days (must be eaten
	stored)	fresh)
Level of mechanization possible	Very high	Currently limited
Labor intensity (jobs per hectare) (Devlin 2016)	0.02	0.23
Average sale value	Low to medium	Medium to high

Adapted from Weidner et al (2019). Consolidating the current knowledge on urban agriculture in productive urban food systems: Learnings, gaps and outlook. *Journal of Cleaner Production*, 209, 1637-1655.

Sources of water supply for 22 UA research projects **Z** participating in the COST Action CA17133

Zurich University of Applied Science

Skar et al. (2020). Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. *Blue-Green Systems*, *2*(1), 1-27.

Trade-offs concerning UA

Involvement of urbanites	Involvement of professionals	
Soil-bound, low tech, open air	CEA (high-tech, soilless)	
Social cohesion (education)	Productivity, quality and safety	
Ecosystem services (biodiversity, climate)	Yield (Monocultures, intercropping)	
Fragmented, small plots	Large plots /Vertical systems	
Labourintense	Capital intense	

A quick bibliometric analysis

1. Search in Web of Science (<u>https://www.webofscience.com</u>)

(TI=(urban)) AND (TI=(agriculture) OR TI=(horticulture) OR TI=(farming))

10:24 AM | Timespan: 2010-01-01 to 2020-12-31 (Publication Date)

2. Analysis with Bibliometrix (https://www.bibliometrix.org/)

Cited >=1 per year \rightarrow 613 papers

2000-2010	91	
2011-2015	155	
2016-2020	367	

With special thanks to Nikita Krähenbühl.

Zurich University of Applied Science

~

1,116

Collection

Web of Science Core

Show editions ~

2000-2010

2011-2015

2016-2020

Zurich University of Applied Sciences

Thematic analysis

zh aw

Zurich University of Applied Sciences

An approach used in bibliometrics to highlight the conceptual structure of a research domain, bringing out the most discussed topics.

Thematic analysis graphs for three time periods

Main themes per time period

Themes	2000-2010	2011-2015	2016-2020
Basic	Management soils	City food	Community gardens Management
Hot	Urbanization health Agriculture diversification	Health management Heavy metals	Urban agriculture Space
Niche	Africa poverty	Antimicrobial resistance genes	Insecurity
Emerging/ Declining	Infection	Ecology Quality	Particles

Conclusion

