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Abstract This paper is derived from a keynote talk given at the Google’s 2020 Flood Forecasting Meets
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extension of laboratory scale theory to the catchment scale is unjustified and that a radical change in
theoretical structure (a new paradigm ) will be required before any major advance can be made in [predicting
catchment-scale rainfall-runoff responses].” He proposed that two things would be necessary to push the
field of surface hydrology into a new period of “normal science”: (i) scale-relevant theories of watersheds
(“[h]ydrology in the future will require a macroscale theory that deals explicitly with the problems posed
by spatial integration of heterogeneous nonlinear interacting processes”) and (i) uncertainty quantification
(*[s]uch a theory will be inherently stochastic and will deal with the value of observations and qualitative
knowledge in reducing predictive uncertainty.”)
Unfortunately, hydrology has not had its Einstein (with all due respect to Einstein, 1926, 1950). Nine decades
from the establishment of the Hydrology section of the American Geophysical Union and after more than a
half-century of computer-based hydrological modeling (Crawford & Burges, 2004), Bldschl et al. (2019) listed
as one of the 23 “Unsolved Problems in Hydrology™: “what are the hydrologic laws at the catchment scale
and how do they change with scale?”

Nearing, Grey S., et al. "What role does hydrological science play in the age of
machine learning?." Water Resources Research 57.3 (2021): e2020WR028091.




Agenda

Formal med Proof-Of-Concept
Kort omkring Supervised Learning

Gennemgang af Machine Learning model &
inputdata

Metrikker & performance




Formal med Proof-of-Concept

« Afsggning af, hvilke alternative muligheder der foreligger for forudsigelse af vandstand/flow (herunder “rene” Machine Learning modeller
samt hybrid-modellering)

» Enevaluering for 5 malestationer af performance for Machine Learning model til prognosticering af vandstand 72 timer ud i fremtiden

« Udpegning af mélestationer, hvor stationer langt opstrams & nedstrgms i systemet samt enkelte stationer pavirket af styring er
repreesenteret
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Supervised Learning

» Labeled data

 Direkte feedback

* Preediktion af udfald/fremtid

Unsupervised Learning
* Ingen labeled data

* Ingen feedback

« "Finde en gemt struktur i data”

Supervised

Unsupervised

Reinforcement

Reinforcement Learning
 Beslutningsproces (styring)
» Kumulativ gevinst

 Leering fra en raekke af aktioner
(optimering af kumulativ gevinst)



Supervised Learning

Historisk malt nedbar Machine Learning algoritme
opstrams maling mm. Optimering af loss function Historisk malt vandstand
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Hvad pavirker variationerne i vandstand ved en 72-timers horisont?
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Observationer vs. prognoser

DMI vejrstationer
Tilgeengelig fra ~2015

MET prognoser
Tilgeengelig fra 2019

Lasning:

« Vitreener pa observerede nedbgrsdata som
prognose

 Vivaliderer pa prognosticerede nedbgrsdata som
prognose




Station 05205: Comparing observed with prognose

Observed precipitation

20ing Chaervod with progee




Supervised Learning

Historisk malt nedbar Machine Learning algoritme
opstrams maling mm. Optimering af loss function Historisk malt vandstand
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Assem, Haytham, et al. "Urban water flow and water

level prediction based on deep learning." In Joint

European Conference on Machine Learning and !
Knowledge Discovery in Databases, pp. 317-329.
Springer, Cham, 2017.
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Supervised Learning

Historisk malt nedbar Machine Learning algoritme
opstrams maling mm. Optimering af loss function Historisk malt vandstand
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Historisk malt nedbar,
opstrems maling mm.




Metrikker

R2-veerdi
Mean Absolute Error (MAE)
Root Mean Squared Error (RMSE)

Hold-out validation (bruger seneste ar
til test, mens resten er henholdsvis
treening & valideringsdata)




Metrikker

R2
Model MAE RMSE
CNN 0.934 0.022 0.028
Klostermglle CNN+offset 0.953 0.018 0.023
Persistence 0.933 0.022 0.028
CNN 0.801 0.053 0.068
Bredstenbro CNN+offset 0.728 0.063 0.079
Persistence 0.378 0.087 0.126
CNN 0.733 0.049 0.056
Kongensbro CNN+offset 0.838 0.037 0.043
Persistence 0.803 0.037 0.048
CNN 0.44 0.059 0.077
Silkeborg Langsg CNN+offset 0.6252 0.047 0.063
Persistence 0.842 0.034 0.041
CNN 0.05 0.150 0.191
Ulstrup CNN+offset -0.151 0.165 0.21
Persistence -0.27 0.164 0.221
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Generelt en god performance, nar
malestationerne ikke er styringspavirket

God til at preediktere dynamik — mindre god
ved uzendrede tilstande over tid

Kraever gerne +3 ars traeningsdata (Silkeborg
Langs@ kun ét ar)

Ekstremerne, hvor modellen skal bruges til
varsling har generelt lavere performance end
gennemsnitlig — fanger dog tendenser godt

Performance “straffes”, nar der er perioder,
hvor den ikke kan preediktere, da de opstar
mange gange (hver time over en periode)
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Key Points:

+ Hydrology lacks scale-relevant
theories, but deep learning
experiments suggest that these
theories should exist
The success of machine learning for
hydrological forecasting has
potential to decouple science from
maodeling
It is up to hydrologists to clearly
show where and when hydrological
theory adds value to simulation and
forecasting
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Abstract This paper is derived from a keynote talk given at the Google’s 2020 Flood Forecasting Meets
Machine Learning Workshop. Recent experiments applying deep learning to rainfall-runoff simulation
indicate that there is significantly more information in large-scale hydrological data sets than hydrologists
have been able to translate into theory or models. While there is a growing interest in machine learning in
the hydrological sciences community, in many ways, our community still holds deeply subjective and
nonevidence-based preferences for models based on a certain type of “process understanding” that has
historically not translated into accurate theory, models, or predictions. This commentary is a call to action
for the hydrology community to focus on developing a quantitative understanding of where and when
hydrological process understanding is valuable in a modeling discipline increasingly dominated by machine
learning. We offer some potential perspectives and preliminary examples about how this might be
accomplished.

1. Beven's Clouds

On April 27, 1900 William Thomson (Lord Kelvin) gave his “Two Clouds” speech (“Nineteenth-Century
Clouds over the Dynamical Theory of Heat and Light™) at the Royal Institution, in which he argued that
“The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is
at present obscured by two clouds.” The two open problems in physics that Kelvin referred to were the
failure of the Michelson-Morley experiment to detect the luminous ether (*how could the earth move
through an elastic solid, such as essentially is the luminiferous ether?”), and the ultraviolet paradox
(“the Maxwell-Boltzmann doctrine regarding the partition of energy”). Within a decade, Einstein had
proposed fundamentally novel insights that led to two paradigm shifts that define modern physics to this
day—the transformation of these two “clouds” into relativity and quantum mechanics.

In 1987, Keith Beven gave what might be considered hydrology's version of the Two Clouds speech at a
symposium of the International Association of Hydrological Sciences (IAHS) (Beven, 1987). He took a
perspective inspired by Thomas Kuhn's theory of scientific revolutions (Kuhn, 1962) to argue that “[t]he
extension of laboratory scale theory to the catchment scale is unjustified and that a radical change in
theoretical structure (a new paradigm ) will be required before any major advance can be made in [predicting
catchment-scale rainfall-runoff responses].” He proposed that two things would be necessary to push the
field of surface hydrology into a new period of “normal science”: (i) scale-relevant theories of watersheds
(“[h]ydrology in the future will require a macroscale theory that deals explicitly with the problems posed
by spatial integration of heterogeneous nonlinear interacting processes”) and (i) uncertainty quantification
(*[s]uch a theory will be inherently stochastic and will deal with the value of observations and qualitative
knowledge in reducing predictive uncertainty.”)

Unfortunately, hydrology has not had its Einstein (with all due respect to Einstein, 1926, 1950). Nine decades
from the establishment of the Hydrology section of the American Geophysical Union and after more than a
half-century of computer-based hydrological modeling (Crawford & Burges, 2004), Bldschl et al. (2019) listed
as one of the 23 “Unsolved Problems in Hydrology™: “what are the hydrologic laws at the catchment scale
and how do they change with scale?”

Nearing, Grey S., et al. "What role does hydrological science play in the age of
machine learning?." Water Resources Research 57.3 (2021): e2020WR028091.







